A biosensor based on Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes and graphene oxide for polyphenol detection

نویسندگان

  • Sergio A Aguila
  • David Shimomoto
  • Franscisco Ipinza
  • Zaira I Bedolla-Valdez
  • José Romo-Herrera
  • Oscar E Contreras
  • Mario H Farías
  • Gabriel Alonso-Núñez
چکیده

The use of nanomaterials allows the design of ultrasensitive biosensors with advantages in the detection of organic molecules. Catechol and catechin are molecules that occur naturally in fruits, and their presence in products like dyes and wines affects quality standards. In this study, catechol and catechin were measured at the nanoscale by means of cyclic voltammetry. The oxidation of Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes (Lac/CN x -MWCNT) and on graphene oxide (Lac/GO) was used to measure the concentrations of catechol and catechin. Nitrogen-doped multiwalled carbon nanotubes (CN x -MWCNT) were synthesized by spray pyrolysis and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). Covalently bonded hybrids with laccase (Lac/CN x -MWCNT and Lac/GO) were generated. Catalytic activity of free enzymes determined with syringaldazine yielded 14 584 UmL-1. With Lac/CN x -MWCNT at concentrations of 6.4 mmol L-1 activity was 9326 U mL-1, while enzyme activity measured with Lac/GO at concentration of 6.4 mmol L-1 was 9 234 U mL-1. The Lac/CN x -MWCNT hybrid showed higher stability than Lac/GO at different ethyl alcohol concentrations. The Lac/CN x -MWCNT hybrid can measure concentrations, not previously reported, as low as 1 × 10-8 mol L-1 by measuring the electric current responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical xanthine biosensor based on zinc oxide nanoparticles‒ multiwalled carbon nanotubes‒1,4-benzoquinone composite

Zinc oxide nanoparticles (ZnONPs), multiwalled carbon nanotubes (MWCNTs) and 1,4benzoquinone (BQ) dispersed in chitosan (CS) matrix were used to construct a xanthine biosensor. Xanthine oxidase (XOx) was immobilized onto BQ-MWCNTs-ZnO–CS composite modified glassy carbon electrode (GCE) using glutaraldehyde as the crosslinking agent. The parameters of the construction process and the experimenta...

متن کامل

Design and Fabrication of Biosensor Based on Immobilized AchE on Modified Electrode by Graphene-multiwall Carbon Nanotubs/Beta Cyclodexterin-chitosan

Organophosphorus (OP) forms an important class of toxic compounds. They inhibit acetyl cholinesterase (AChE, EC 3.1.1.7) that results in respiratory and myocardial malfunctions. Pesticides could be accumulated in vegetables and fruits, so detection of them is very important. The goals of this study are decreasing detection time and detection limit of methyl parathion bioprobe. In this research ...

متن کامل

Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix

A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assemb...

متن کامل

A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol

In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared ...

متن کامل

A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.

A novel biosensor for glucose was prepared by immobilizing glucose oxidase (GOx) on nitrogen-doped carbon nanotubes (CNx-MWNTs) modified electrode. The CNx-MWNTs membrane showed an excellent electrocatalytic activity toward the reduction of O(2) due to its diatomic side-on adsorption on CNx-MWNTs. The nitrogen doping accelerated the electron transfer from electrode surface to the immobilized GO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015